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Abstract—Comparing the yields in different anomalies experiments is
important for both theoretical and practical purposes, but it is problematic
because the effects may be measured on differing scales. The units in which
experiments are posed vary across digital and analog measures recorded in
a wide range of uniquely defined trials, runs, and series. Even apparently
fundamental units such as bit rates may lead to disparate calculated effect sizes
and potentially misleading inter-experiment comparisons. This paper seeks to
identify a study unit that can render the results from various types of anomalies
experiments on a common scale. Across several databases generated in the
consistent environment of the Princeton Engineering Anomalies Research
(PEAR) laboratory, yield per unit of time is the most promising of several
measures considered. The number of hours during which participants attempt
to produce anomalous effects can be consistently defined, and the time-
normalized yield Y(h)¼ Z /�hours is demonstrably similar across a number of
human/machine experiments, with a magnitude of about 0.2. On both practical
and heuristic grounds, this constitutes a prima facie case for regarding the time-
normalized yield as a natural metric for anomalous effects of consciousness.

Application to a broad range of experiments, including examples from other
laboratories, confirms the viability and utility of a time-based yield calculation.
A v2 test across 12 local and remote databases from PEAR’s human/machine
experiments indicates strong homogeneity. Inclusion of the remote perception
database, which has a significantly larger yield at Y(h) ¼ 0.6, immediately
renders the distribution of effect sizes heterogeneous. These and other appli-
cations return reasonable and instructive results that recommend the simple,
time-normalized yield as a natural unit for cross-experiment comparisons per-
mitting an integrated view of anomalies research results.

Keywords: effect size—random event generator—random number—REG—
RNG—normalization—inter-experiment comparison—meta-analysis—
statistics—experimental yields—bits—trials—time normalization

Introduction

Because of the very small size of effects, and the consequently weak signal-
to-noise ratio typical in anomalies research, especially human/machine inter-
action experiments, there is considerable impetus to search for experiments that
are more sensitive. This search also produces a growing body of data on an array
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of potentially relevant parameters that may help define and understand the
anomalous effects. However, a concomitant result of this otherwise desirable
research development is a proliferation of differing data units or measures, with
the result that it is difficult and apparently inappropriate to combine or compare
results across experiments. Thus, ironically, what should in principle be a richer
and more comprehensive picture becomes fragmented in such a way that
important features of commonality and difference are obscured.

Over the past few decades, a problem similar to this in various fields has
been addressed by developing procedures for meta-analysis, or quantitative
review, within the literature of a particular discipline or experimental paradigm
(Glass, 1977; Rosenthal, 1991). Meta-analysis treats each of a body of
experiments or experimental subsets (categories) as a data-point, and thereby
creates a ‘‘higher level’’ database that permits rigorous and quantitative
assessment of the full concatenation of available information. The key to this
approach is that the experiments must be posed in well-defined, common units
so that effect sizes expressed in these units can be combined and compared.
Such meta-analyses in anomalies research have demonstrated the importance
of aggregation within carefully circumscribed protocols (Utts, 1991). But
specifying the unifying measure is not a trivial task. Important questions and
generalizations become accessible only if it is possible to find a common, or
‘‘natural’’, unit in which to express effects generated in differing experiments
that have the common purpose of assessing anomalous interactions of human
consciousness or intentions. The present exploration considers several
potentially viable units to determine which of them may be most appro-
priate as the basis for a natural and broadly applicable measure of the
anomalous yield.

The term ‘‘effect size’’ is used informally for a variety of different quantities,
often with a unique, local definition. A frequent usage refers to a shift in the
experimental distribution mean relative to a standard. This measure allows
comparison of effects across subsets within a particular research protocol, but it
does not embody information about reliability of the estimates, nor is it possible
to compare distribution means from experiments with different measures.

Conversion of the meanshift to a Z-score normalizes it in terms of its own
standard error of estimate, and hence expresses effects in a nominally
comparable unit, but the magnitude of the Z-score is dependent on the size of
the database from which the mean is estimated, making it useful only for
significance comparisons addressing the certainty with which experimental
effects can be distinguished from each other or from chance fluctuations.

In order to establish relationships and summarize findings across different
experiments, and to incisively assess factors that influence variations, several
other effect size measures have been developed, together with combination
and comparison procedures. Special purpose measures of anomalous effects
have been suggested by Schmidt (1970), Timm (1973), Tart (1983), and
others, but these all apply only when experiments share a common

178 R. D. Nelson



experimental and statistical paradigm. More recently, for purposes of meta-
analysis, the issue has been given serious consideration by statisticians.
Generally, an effect size is constructed by relating the meanshift or its test of
significance to the size of the study, and numerous specific examples have
been proposed (Cohen, 1988; Glass, 1977). One that is widely used is Cohen’s
d, which is the ratio of the difference in means to the pooled estimate for the
population standard deviation, d ¼ (M1�M2)/r, but there are inconsistencies in
its application for correlated and uncorrelated observations, and practical
interpretation is not straightforward. Rosenthal (1991) argues that the most
generally applicable, readily interpretable, and consistently defined of several
roughly equivalent effect size measures is the Pearson product moment
correlation coefficient, which can be computed from a variety of different
original statistics. It is related to Z by the function r ¼ Z/�N, where N is the
number of study units on which the Z-score is based. This measure expresses
the difference between experimental conditions in units of the standard
deviation of the raw data (usually called trials) from the experiment. It has
come to be regarded as a canonical measure, but as we will see, it is not an
appropriate standard for inter-experiment comparisons because the practical
meaning of a trial varies greatly across experiments.

The purpose here is to examine structural analogs of r calculated using other
study units in addition to the original trials or data points, renormalizing the
Z-score to express experimental results in terms of some common metric
that yields a consistent measure of anomalous interactions across differing
experimental protocols. The criterion for success in this search for what might be
termed a ‘‘natural scale’’ is based on the assumption that conscious intention to
change the distribution of experimental data should have a similar yield when
tested in different ways, albeit with variations attributable to real differences in
operator performance, experimental conditions, and other variables. It should be
clear that this fundamental idea of expected similarity or homogeneity across
experiments, although reasonable, can only be tested inductively by accumu-
lating indications that it supports consistent and sensible interpretations. We will
therefore look for a transformation that produces the smoothest or most similar
array of yields across a comparable set of experimental databases, intending to
test it further by applying it to make comparisons among a broader assortment
of experiments.

Several bodies of data from human/machine interaction experiments and
remote perception (PRP) experiments conducted over 15 years in the Princeton
Engineering Anomalies Research (PEAR) program provide a rich source for
comparisons, since all the experiments have been conducted in a consistent
environment with the same philosophical framework, personnel, and style (Jahn
et al., 1987). PEAR has large databases from each of these experiments, in
which most factors are kept constant, where there is no file drawer of unreported
experiments, and wherein there are statistically significant effects and
demonstrable internal structure.
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Procedure

Five study units were chosen for this assessment: bits, information, trials,
series, and time. To simplify comparison of the different transformations,
performance in each of the human/machine experiments was represented by the
‘‘bottom-line’’ difference between results in the two intentional conditions (e.g.,
HI� LO), expressed as a Z-score. For each of the five different study units, the
yield, Y(x)¼ Z/�N(x), where N is the number of units of type x, was calculated
for a representative body of data from each of several experiments. In most
cases, a standard subset composed of equal amounts of data from the most
prolific operators was used, since the full databases have large imbalances in the
sizes of individual operator contributions.

Calculations were made for (1) the actual number of binary decisions (i.e., the
raw bit count); (2) the Shannon-Weaver information content, called the effective
bit count; (3) the number of trials, or basic data records; (4) the pre-defined
complete series or experiment; and (5) a time-based unit, the number of hours
invested in the experimental effort. Some of these measures need more
explanation. Trials are typically the basic data record and the smallest feedback
unit for a given experiment. The trial-based yield corresponds to the unit used
for calculating the product moment r¼ Z/�N, which is the canonical effect size
expressing deviation in units of the trial standard deviation. The series or
experiment amounts to a teleological measure, since operators know that it
comprises the basic goal-directed task. That is, although the series definitions
are arbitrary and may change, series are invariably followed by the terminal
feedback that tells the operator and experimenter what happened as a result of
the operator’s effort. For the time-based unit, a measure of the operator’s
subjective time would be ideal, but is not feasible, so an objective and readily
calculated approximation was specified: In all the human/machine interaction
experiments, the time period during which the machine is running and the target
system is therefore labile or potentially vulnerable is well defined. The total time
during the two intentional conditions when the target system was active and
labile in this sense was used. For PRP experiments, 15 minutes per trial, as
suggested by the standard protocol, was used for the time-based calculation.

The Experiments

A brief description of the essential features distinguishing the five experi-
ments used for our assessment will indicate how they differ with regard to the
physical systems and the particular measures involved. For each experiment,
a ‘‘standard subset’’ was specified to minimize the impact of variations in
individual operator contributions; in most cases, this was accomplished by using
equal contributions from the relatively prolific operators.

The random event generator (REG) experiments at PEAR are the longest
running and most deeply studied paradigm. There are several variations, but
a basic description applies generally and will give an idea of the conduct of all
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our experiments. The design is called ‘‘tripolar’’ to reflect three conditions of
intention: high, low, and baseline. This means that an operator (PEAR’s name
for the ‘‘subject’’ or participant) tries to get the REG to produce results either
higher or lower than expectation according to an instruction for the current trial
or run, or to let the REG produce uninfluenced baseline trials. The experiment
takes place in a comfortable setting, with the operator sitting in a chair roughly
a meter distant from the REG itself for the basic local trials. There is usually
feedback presented in a dedicated numerical display or by computer graphics,
although there are a number of options including no feedback. After an
introduction and general instruction, the experimenter withdraws to allow the
operator to focus on the REG and develop his or her own strategy for interaction
with the machine. The operators are not told how to achieve the intended results,
but are allowed to develop their own strategies. Most report that they wish for or
envision the desired outcome, and that they try to become attuned to the device,
to be resonant or friendly with it. All data recordings, and issues of security and
integrity, are managed automatically by the hardware and software.

All the REG experiments have a recorded data unit of ‘‘trials’’, approximately
1-second long, that are the sums of 200 bits, taken in series with lengths ranging
from 1000 to 5000 trials per intention (Nelson et al., 1984, 1991, 2000). For the
REG experiment, the standard subset employed for the basic calculations and
comparisons was the first 10,000 trials produced by 30 operators who generated
at least that many, drawn from the subset of all local, diode-based trials. The
bit in the REG experiments is the well-defined, classical binary decision,
which leads to a clear theoretical model and straightforward calculations. The
Shannon-Weaver ‘‘effective information’’ content of an REG trial corresponds
to the base 2 log of 200, or 7.64 bits, and represents the number of binary
decisions required to precisely specify a trial outcome. (The sum of 200 bits
is normally distributed, so that a more conservative measure could be used, but
for this argument the simpler procedure will suffice.) On its face, this is a very
attractive unit, but as will be shown later, it produces an unreasonably broad
range of effect size or yield estimates, suggesting that the Shannon-Weaver
formalism does not represent the fundamental currency in which anomalous
information transfer should be measured. The amount of time invested by
operators was defined as a function of the number of trials, or, equivalently, the
period of time during which the experiment provides online feedback.

The Random Mechanical Cascade (RMC) experiment is a large machine, 6 feet
wide and 10 feet high, built into the wall opposite a couch. In a single 12-minute
run, 9000 3 /

4-inch balls fall from a central opening at the top through an array of
330 pins into 19 collecting bins. Operators sit on the couch and try to shift the
mean of the resulting quasi-Gaussian distribution to the right or left compared to
a baseline run. Software records the bin into which a ball drops after bouncing
through the pin array, and calculation indicates that there are about 40 binary
equivalent decisions or raw bits per ball, where the bit is defined as the ‘‘decision’’
between adjacent bins (Dunne et al., 1988). The effective bit count per ball is
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the base 2 log of 40, or 5.32 bits of information. Again, this is a simplified
approximation that is sufficient for present purposes; a rigorous account would
include details of the distribution. Data are taken in a tripolar protocol, in series of
10 or 20 runs per intention, and Z-scores are calculated from the difference
between distribution means in pairs of runs. For the RMC experiment the standard
subset used was the first 10 datasets for 25 operators meeting this minimum.

In the Linear Pendulum (PEND) experiment (Nelson et al., 1994), operators sit
in a comfortable chair in front of an aesthetically designed pendulum consisting
of a 30-inch long fused silica shaft and a quartz crystal bob 2 inches in diameter.
It is enclosed in a clear acrylic case, and feedback is provided by changing the
color of light to represent degree of success in keeping the pendulum swinging or
damping it, relative to baseline. The measured unit is the swing-to-swing change
in velocity, derived from interrupts timed by a 50-nanosecond clock, and
recorded as differences in the damping rate over the 200 swings in a 3-minute
run. This is fundamentally an analog measurement, making it difficult to define
a bit-counting measure of the effect, and an arbitrary surrogate was calculated by
assigning one bit per swing, as if the difference between conditions at each swing
were either positive or negative, discounting magnitude. Series consisted of five
or nine sets of runs, and the standard subset used for PEND was the first 25 sets
generated by 18 operators with this number or more.

The measurable in the microelectronic shift-register (CHIP) experiment is the
error rate in 1-second trials of 1000 bits (Nelson et al., 1992), which operators try to
increase or decrease. The information content of a trial is 9.97 effective bits. Data
were taken in runs of 50 trials and series of 25 runs. For the CHIP experiment, all
data from the reliable ‘‘trials’’ protocol (in which the intention assignment was
randomly changed for every trial) were used as the standard subset.

In the PRP experiments, one person, the percipient, tries to envision the scene
visited by a second person, the agent. There is typically a verbal description and
sketches, but the basic data for computer analysis are recorded in the form of 30
binary descriptors per trial, chosen by each of the two participants (Dunne et al.,
1983, 1989). Both agent and percipient address the task in a free-response mode,
during which they are certainly processing a large amount of information that
only later is coded into the arbitrary descriptor format from which a score is
computed. If the 30 bits were all informative and independent, the description
would specify one from more than a billion alternatives. Partial inter-descriptor
redundancy reduces the effective bit count by about 25%, yielding an esti-
mated information content of 22.5 bits per trial. The standard subset for the
PRP experiment used all formal data in the randomly instructed, ab initio
encoded subset.

Results

The five different yield normalizations were applied to each of these
experiments, using the standard data subsets described above. Table 1 shows

182 R. D. Nelson



these calculations, giving a Z-score for the experiment and for each of the five
measures; the number of study units, N; and the renormalized effect size, Y(x).

To help visualize the degree of variation across experiments, Table 2
compares the five different calculations as ratios of the yield in the other
experiments to that of the REG as a standard. The results are visualized
graphically in Figures 1 and 2.

In Figure 1, the linear scale allows a direct visual comparison of the relative
consistency of the various measures. The yields calculated for both raw and
effective bits range over two orders of magnitude across the five experiments,
indicating that this apparently simple and fundamental measure cannot, in either
form, serve as a general basis for inter-experiment comparisons, given the
assumption that a natural scale should indicate homogeneity among scores
purporting to measure the same phenomenon. Similarly, the trial, which is the
basis for the nominal effect size, r, does not appear to provide a natural scale for
anomalous effects. The figure makes it clear that variations in the definition of
experimental units result in different patterns across the five yield calculations.

In Figure 2, a log scale is used for the same data, allowing a more detailed
visual comparison of the relative consistency of the various measures. Here it
is quite clear that there are orders of magnitude differences in the canonical,

TABLE 2
Yield Ratios for Five Measures

Measure REG RMC PEND CHIP PRP

Raw bits 1 .28 4.89 1.54 125.53
Effective bits 1 .24 5.00 1.53 52.31
Trials 1 30.38 9.17 5.56 89.40
Series 1 1.48 .44 .58 3.79
Hours 1 1.06 .63 .72 2.74

TABLE 1
Comparison of Yield Calculations

Measure REG RMC PEND CHIP PRP

Z-score 2.780 1.763 .994 .554 3.122
Raw bits, N 3.4e7 1.8e8 180400 770000 2820

Yield, Y(r) .00047 .00013 .0023 .00063 .059

Effective bits, N 4.5e6 3.3e7 23601 76261 2115
Yield, Y(e) .0013 .00031 .0065 .0020 .068

Trials, N 588400 492 902 760 94
Yield, Y(t) .0036 .079 .033 .020 .322

Series, N 136 25 90 16 12
Yield, Y(s) .238 .353 .105 .139 .901

Hours, N 138 49 45 11 2
Yield, Y(h) .236 .251 .148 .170 .644
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trial-based yield across experiments. This is the ‘‘effect size’’ that is most often
published for anomalies experiments, and it is frequently invoked to compare
experimental protocols (e.g., Targ, 2000). These results strongly suggest a need
for careful reconsideration of such comparisons, and a search for an appropriate
comparison standard; otherwise we may draw flawed conclusions about differ-
ences in effect size.

As noted, the bit and trial computations produce highly disparate results, but
both the time-based and series-based calculations exhibit relatively similar yields
across all experiments. This is a preliminary indication that the criteria for
a useful standard might be met. The time-based measure presents the smoothest
set of ratios. Now we must look more deeply to see whether its small advantage
over the series unit is a substantial indication that results scale most naturally as
a function of the time invested in their generation, or whether the teleological,
goal-oriented measure represented by the completed experimental series is the
fundamental unit in which anomalies might best be measured. This question
can be quantitatively assessed by comparing data subsets where the pre-defined
series length is changed within a particular experimental protocol, so that a given
number of hours spent generating data is broken into differing numbers of series.

In the local, diode REG experiment at PEAR, series of 5000, 3000, 2500, and
1000 trials have been employed, and in the local RMC experiment, series of
20, 10, and 3 runs have been used. Table 3 and Figure 3 show the yield
computations based on series, Y(s), and time, Y(h), with their standard errors
(SE) for these seven datasets.

Fig. 1. The ratio of the effect size for each of the five experiments is calculated relative to the
REG effect size and plotted on a linear scale.
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There is a significant positive correlation of the series-based yield, Y(s), with
the length of the series (r ¼ 0.845, p , 0.02), whereas the corresponding
correlation for the time-based yields, Y(h), though positive, is not significant. A
more direct test for our purposes, however, assesses the goodness-of-fit between
the array of yield computations and our criterion of similarity, which can be
modeled as a homogeneous distribution. Tests for homogeneity of the residuals
from the mean across the seven yields shows that neither time nor series
transformations can completely reconcile differences (v2 on 6 degrees of
freedom¼ 17.4 and 27.3, respectively). However, two of the seven subsets have
near-zero effects (Z ¼ 0.243 and Z ¼ �0.662, for the REG3000 and RMC3
experiments, respectively). Given the null effects, these cases are not useful in
discriminating the series- and time-based calculations. A common procedure

Fig. 2. The ratio of the effect size for each of the five experiments is calculated relative to the
REG effect size and plotted on a logarithmic scale.

TABLE 3
Yield Transformed by Series and Time

Database Z-score Series, N Hours, N Y(s) SE(s) Y(h) SE(h)

REG5000 3.472 17 40 .842 .243 .549 .158
REG3000 0.243 59 83 .032 .132 .027 .111
REG2500 1.359 86 102 .147 .107 .135 .099
REG1000 2.903 360 169 .153 .053 .223 .078
RMC20 3.335 26 208 .654 .196 .231 .069
RMC10 2.594 61 244 .332 .128 .166 .064
RMC3 �0.662 70 84 �.079 .120 �.072 .109
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used in meta-analysis to mitigate the effect of outliers on estimations of effect
size is to progressively exclude extreme values until a homogeneous distribution
is achieved (Rosenfeld, 1975). This exercise identifies the REG3000 and RMC3
subsets as outliers, and if they are excluded, the picture sharpens: across the five
remaining experiments, v2 for the time-based yields is 5.77 on 4 degrees of
freedom, with p¼ 0.23, while the series-based yields remain heterogeneous with
v2¼ 14.27 and corresponding p¼ 0.0035. The time-based yields are statistically
indistinguishable for four of the five remaining subsets, two from each
experiment, while those based on the series measure show a component of
variation proportional to the number of trials or length of the series, in addition
to real differences that may exist among the subsets (e.g., the REG 5000
database has a relatively large effect size or yield by any standard).

Returning to the time-normalized yield in the standard subsets, we find that
none of the differences among the Y(h) for the REG, RMC, PEND, and CHIP
experiments approaches significance, and even that between PRP and
a composite estimate for the others is only marginally significant. However,
this latter difference appears to be real, as indicated by comparisons of the
complete databases where error estimates are smaller. In these comparisons,
the four human/machine experiments remain statistically indistinguishable from
each other, while the PRP yield is significantly larger than REG (Z ¼ 3.59),
RMC (Z¼ 3.51), and PEND (Z ¼ 3.90).

The calculation of time-normalized yield, Y(h), can be made with objectivity
and repeatability, and it can be made with equal convenience not only for

Fig. 3. Yield computations for REG and RMC experiments with differing series lengths within
otherwise consistent experimental protocols.
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the various PEAR experiments but for other laboratories as well, provided an
adequate description of the experimental protocol is reported. It is encouraging
that there is a demonstrable consistency across several quite different human/
machine experiments. Only the PRP yield differs from the others, and it is a
paradigm that differs in ways that should be instructive. Among other things, it
is an information transfer experiment rather than a mind/matter interaction. It
also involves two people, but even when the calculation is based on the time
invested by both participants, the time-normalized yield remains twice as large
and significantly different from that in the human/machine experiments.

Using the fact that the yield per unit time is similar across a variety of related
experiments to argue that the measure represents a natural scale for anomalous
effects of consciousness is something of a bootstrapping operation, because the
argument presumes an answer to one of the important questions for which
an effect size or yield reconciliation is desired. Nevertheless, the balance of in-
dications from these analyses, together with practical considerations, suggests
that time normalization has broad generality. Analogy with the search for lawful
relationships in the physical sciences suggests that an appropriate criterion for
a useful metric is a simple functional relationship across a variety of appli-
cations, and time normalization does meet that criterion.

Applications

The time-based yield computation can be applied to a broader sample of
experimental data, both to confirm its viability and to reveal some of the detailed
information inherent in comparisons of experimental subsets within and across
several research domains. The REG database is a primary resource, since it has
a number of variants all using exactly the same basic design, but exploring
parameters that give differing perspectives. Table 4 provides a comprehensive
survey of the experiment, showing Y(h) ¼ Z/�hours for the major variants and
some of their subsets. In this and subsequent tables, an asterisk marks the
standard subset used for the transformation comparisons previously shown in
Tables 1 and 2.

A detailed description of the various subsets can be found in Nelson et al.
(1991, 2000), but a brief accounting is in order. Three REG device types have
been used, with the majority of experiments on a diode-based ‘‘true’’ random
source. Different locations, for Diode as well as the algorithmic pseudo (ATP)
experiments, include proximate (A); next room (B); remote (C); and remote,
off-time (D). Some early experiments combined parameters within series (X).
Oldreg, Remreg, and Thoureg are distinguished by the size of series and the
general purposes of the experimental program. The subset names in the co-
operator experiment (Dunne et al., 1991) are largely self-explanatory; the
bonded individual subset is produced by the people who belong to bonded pairs,
here working alone. The Pseudo REG (PREG) experiments use a 30-stage shift-
register based pseudo-random sequence with a variable shift frequency (Ramp)
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or a fixed frequency (Fixed). Finally, the ATP subsets use an algorithm seeded
by a combination of the time-of-day and microsecond timer readings.

The majority of the subset yields clearly fall into the range for human/
machine experiments shown in the last line of Table 1, with a few notable
exceptions. The Diode X subset consists of the high scoring first series at the
beginning of the research program (Dunne et al., 1994) and reflects the
performance of only a few individuals. The opposite-sex co-operators, especially
the bonded pairs, also appear to generate larger effects, with Z ¼ 2.00 for the
difference between effects for bonded pairs and the standard subset; this is not
due to the particular operators involved, since the difference compared with their
combined individual databases is also impressive, with Z¼1.79. Even if the time
for both operators is considered, reducing the calculated yield by a factor of �2,
the opposite-sex yields remain relatively large. In contrast, the same-sex co-
operators have a small negative result, significantly different from the standard

TABLE 4
Time-Based Effect Sizes, REG Experiment

Subset Z-score Trials, N Hours Y(h) SE(h)

All Diode 4.379 2592450 609 .177 .041
First 10000* 2.780 588400 138 .236 .085
Local 3.809 1676450 394 .192 .050
Remote 2.045 792000 186 .150 .073
Diode A 3.103 1593200 374 .160 .052
Diode B .849 124000 29 .157 .185
Diode C 1.173 618000 145 .097 .083
Diode D 2.153 174000 41 .337 .156
Diode X 3.519 83250 19 .796 .226
Oldreg 103 2.994 602450 142 .252 .084
Oldreg 87 3.615 522450 123 .326 .090
Remreg 1.541 1092000 257 .096 .062
Thoureg 3.289 898000 211 .226 .069

Co-operator 1.883 342000 80 .210 .112

Same sex �.815 158000 37 �.134 .164
Opposite sex 3.324 184000 43 .505 .152
Bonded pairs 2.976 60000 14 .794 .266
Unbonded 1.972 124000 29 .365 .185

Bonded individuals 3.545 617150 145 .294 .083

PREG 1.988 293000 69 .240 .121
Ramp frequency 2.765 247000 58 .363 .131
Fixed frequency �1.390 46000 11 �.423 .304

ATP �.444 964000 227 �.029 .066
Local �.646 792000 186 �.047 .073
Remote .897 128000 30 .164 .182
ATP B �.866 44000 10 �.269 .311
ATP C .836 122000 29 .156 .187
ATP D .369 6000 1 .311 .842

* Data subset used for the Results section calculations.
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subset (Z ¼ 2.00). Other exceptions are the small or negative yields for the
ATP source and for an exploratory database in the fixed frequency version of
the hardware Pseudo experiment, both of which differ significantly from the
standard subset (Z ¼ 2.46 and 2.09, respectively). It is instructive that the only
major subset that shows an essentially null yield is the ATP database, which uses
an algorithmic pseudorandom source. However, somewhat surprisingly, but of
considerable theoretical interest, the remote subset of ATP shows a positive
achievement comparable to the diode effect.

Looking at a finer level of detail within the REG database, some potentially
instructive variations occur in the amount of operator time invested relative to
the number of bits and trials, during explorations of different sample sizes and
sampling rates. Table 5 shows Y(h) in the full diode databases for sample sizes
of 20, 200, and 2000 bits per trial at sampling rates of 100, 1000, and 10000 bits
per second.

Since some of the databases are quite small, and hence representative of only
a few operators, the table also shows a set of results from one prolific operator,
010, in which variations due to differences among individuals are excluded.

This table indicates that Y(h) is of roughly similar magnitude in most of these
subsets, with a trend toward larger yields for larger sample sizes. Similarly, there
is a trend toward larger yields for faster rates, although few of the apparent
differences approach significance. Figures 4 and 5 show these trends, using the
full database calculations (except for the 100-bit sample size, which was
explored only by operator 010). Neither the sample size nor the sampling rate
trend is significant, although that for sample size has a Z-score of 1.60 for the
slope coefficient, but both parameters suggest structure and indicate that a closer
look, disentangling the size and rate interaction, should be informative.

The RMC experiment, shown in Table 6, was originally designed to have
20 sets of runs for a complete series. This was later shortened to 10 runs for

TABLE 5
Time-Based Yield: REG Diode, Sample Size, and Rate

Size Rate Sec/Trial Z-score Trials, N Hours Y(h) SE(h)

20 100 .792 �1.223 76000 17 �.299 .244
20 1000 .648 .820 6000 1 .789 .962
200 100 2.598 1.437 86900 63 .181 .126
200 1000 .846 3.848 2457150 577 .160 .042
200 10000 .648 .793 40000 7 .296 .373
2000 1000 2.640 2.634 34300 25 .525 .199
2000 10000 .846 .846 88000 21 .294 .220
20(010) 100 .792 �.248 30000 7 �.097 .389
100(010) 100 1.602 .502 12400 6 .214 .426
100(010) 1000 .744 .363 13250 3 .219 .604
200(010) 100 2.598 3.305 43750 32 .588 .178
200(010) 1000 .846 3.053 61400 14 .804 .263
2000(010) 1000 2.640 2.851 25300 19 .662 .232
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operator comfort. Twenty-five operators produced 87 series, with significant
overall results (Dunne et al., 1988). Subsequently, the nominal series was
shortened still further to three sets, and a new exploratory database (RMC3) was
started, with the goal of addressing certain questions inspired by the original
experiment. In the latter, much smaller database, the overall effect is reversed

Fig. 5. Time-normalized REG yield, Y(h), as a function of sampling rate.

Fig. 4. Time-normalized REG yield, Y(h), as a function of sample size.
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and has roughly the same magnitude as the positive effect in the original
experiment. Despite the small size of the RMC3 database, the difference is
significant, with Z ¼ 3.26, but an attempt to interpret the difference is beyond
the scope of this paper.

The PEND experiment, presented in Table 7, has significant internal structure,
even though the overall HI � LO difference is not significant. The largest
contributions to the structure arise from the difference between subsets with
volitional vs. instructed assignment of intention (Nelson et al., 1994). Two
versions of the experiment are presented in the table. The upper portion of Table
7 shows the full database as of February 1993, at which time the decision was
made to close the ongoing series of replications and analyze the concatenation.

TABLE 7
Time-Based Yield: PEND

Subset Z-score Trials, N Hours Y(h) SE(h)

All PEND .713 3090 155 .057 .080
First 25 runs* .994 902 45 .148 .256
Prolific only 1.785 2622 131 .156 .087

Local .388 1830 92 .040 .104

Volitional �1.505 842 42 �.232 .154
Instructed 1.958 988 49 .279 .142

Remote .667 1260 63 .084 .126

SSE PEND 1.607 1902 95 .165 .103
Local .709 1620 81 .079 .111

Volitional �1.315 782 39 �.210 .160
Instructed 2.314 838 42 .357 .154

Remote 2.362 282 14 .629 .266

* Data subset used for the Results section calculations.

TABLE 6
Time-Based Yield: RMC

Subset Z-score Trials, N Hours Y(h) SE(h)

All 10, 20 4.264 2780 556 .181 .042
First 10 sets* 1.763 246 49 .251 .143
Local 3.891 2262 452 .183 .047
Remote 2.139 518 104 .210 .098

All RMC3 �1.610 610 122 �.146 .091
Local �0.662 420 84 �.072 .109
Remote �1.914 190 38 �.310 .162

All RMC 4.063 3390 678 .156 .038
Local 3.813 2682 536 .165 .043
Remote 1.759 708 142 .148 .084

* Data subset used for the Results section calculations.
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The second part shows the database as of June 1992, which was described in
a presentation to the annual meeting of the Society for Scientific Exploration
(SSE) (Nelson & Bradish, 1992). The bulk of the subsequent data are from one
operator with a very large remote database (600 trials, more than half the new
data) in which there is a marginally significant negative yield. The SSE data-
base therefore may give a more representative indication of the effects in this
experiment. The remote yield in the SSE subset is considerably larger than that
in the local data, a difference that persists in the full database (although it is
reduced by the hyper-prolific operator’s contributions.)

The PRP experiment has a number of instructive subset divisions, among
which a particularly interesting one is the distinction between trials done in the
volitional mode, where agents freely select targets in their location at the time
specified for the trial and instructed trials are drawn randomly from a large
prepared pool. A criticism of the PRP experiments (Hansen et al., 1992) sug-
gested that the volitional trials were vulnerable to ‘‘shared biases’’. A detailed
response (Dobyns et al., 1992) showed this concern to be unwarranted, and as
may be seen in Table 8, the allegedly flawed volitional trials have a considerably
smaller yield than those in the apparently safer instructed protocol.

The table also provides a comparison of trials directly encoded in the binary
descriptor list (ab initio) vs. those encoded from transcripts (post facto). If both
the agent and percipient times are considered to be instrumental in this
experiment, the yield and the standard error are both reduced by a factor of �2,
but even in this case the overall yield remains a factor of two larger than is
typical in the human/machine interaction experiments.

Finally, results from two relatively small human/machine experiments are
shown in Table 9. These were both terminated as active experiments, even
though they showed promise, before large databases could be obtained. The
Fabry-Perot Interferometer (FPI) experiment proved to require too great
a proportion of laboratory resources in order to provide adequate control of
the environmental influences on the extremely sensitive instrument (Nelson
et al., 1982). The microelectronic CHIP experiment could not be continued
because the adequately controlled ‘‘trials’’ protocol was too demanding and
uncomfortable for operators.

TABLE 8
Time-Based Yield: PRP, 15 Minutes per Trial

Subset Z-score Trials, N Hours Y(h) SE(h)

All formal 6.355 336 168 .693 .109
Instructed, ab initio* 3.122 94 47 .644 .206
Volitional 3.549 211 106 .489 .137
Instructed 5.771 125 63 1.032 .178
Ex post facto 5.792 59 30 1.508 .260
Ab initio 4.578 277 139 .550 .120

* Data subset used for the Results section calculations.
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The ‘‘trials’’ subset of the CHIP database, although quite small, was generated in
a fully competent and reliable experiment, and could therefore be included in the
comparisons described in the Results section. The ‘‘runs’’ protocol was potentially
vulnerable to large error rate fluctuations due to regime changes traceable to
temporal variations in the microscopic behavior of electronic components, and the
very large yield is suggestive of an artifactual inflation. The timing of the runs and
of the error rate changes was of the same order, so a ‘‘success’’ could be attributed
to fortuitous, coincidental timing, so we opted for the conservative view that the
data could not be accepted as representative. This is an exemplary case showing
how the comparison of Y(h) with values typically found in related experiments
may help identify extreme outliers and lead to detection of design vulnerabilities.

The FPI experiment (Table 9) used a bipolar protocol, making it potentially
more vulnerable to artifacts than our standard tripolar experiments. Its yield
appears to be larger than that of the other human/machine experiments, but the
error estimate is commensurately large and the difference does not approach
significance. The smaller yield shown in the last line of Table 9 reflects the
requirement in the FPI experiment for an experimenter to be present and to know
the intention for the trial and thus be a potential contributor, in the sense that he
or she may also have an intention and at least unconsciously participate in the
anomalous interaction.

Inter-Laboratory Explorations

As specific examples of the potential utility of the time-normalized yield
measure for exploration of the broad range of questions that might be asked in
anomalies research, three calculations were made for non-PEAR research with
commonalities and differences that are instructive. In all three cases, there is an
expectation of a relatively large effect size or yield, based on the protocol.

Helmut Schmidt has a large body of REG-type experiments, addressing
a number of issues common to the PEAR experiments but using different
approaches in some respects, most notably by pre-selecting subjects based on
pilot tests. The question can be asked whether selected subjects actually produce
larger yields, and if so, an estimate of their relative efficiency can be made (e.g.,
by comparing Schmidt’s time-normalized yield with the PEAR results). One of
the best protected of his experiments was done in collaboration with Morris and

TABLE 9
Time-Based Yield: CHIP, FPI

Subset Z-score Trials, N Hours Y(h) SE(h)

CHIP, trials* .554 760 11 .170 .306
CHIP, runs 7.331 650 10 2.318 .316
FPI, operator 2.258 60 10 .714 .316
FPI, operator and experimenter 2.258 60 20 .505 .224

* Data subset used for the Results section calculations.
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Rudolph (Schmidt et al., 1986) and nicely excludes vulnerabilities to potential
spurious effects and various criticisms through its multi-experimenter design and
implementation. This experiment uses seed numbers based on pre-recorded
radioactive decay for an algorithmic pseudorandom sequence that determines
the behavior of visual or auditory feedback.

It can be argued that there are more participants in Schmidt’s experiment than
the person regarded as the subject. Indeed, though this is usually ignored in
experimental design, several others may be wishing for a non-random outcome.
The experimenter uses a true random event source to generate a set of seed
numbers, hoping, one may presume, they will turn out to be interesting. The
second observer generates a true random sequence of target assignments,
probably with a similar state of mind. Finally, the subject spends on the order of
1 minute per trial, attempting to influence the outcome of the experiment. The
upper part of Table 10 shows Schmidt’s yields calculated as if there were one,
two, or three participants contributing to the anomalous result, using a time per
trial in the middle of the range indicated in the published report. All of these are
indeed larger than Y(h) for the standard PEAR REG database, but quite similar
to those for some of the smaller subsets and for selected operators.

The second example is an exploration of a potentially more labile anomalous
interaction in an experiment that assesses direct mental influence of one person
on the activity of another (Braud et al., 1995). It asks whether a participant’s
ability to focus attention upon an object can be facilitated by a distant, isolated
‘‘helper’’. Significant differences were found in the number of self-reported
distraction episodes in randomly interspersed control and helping periods. Each
session contained eight 1-minute segments for each of the conditions, and the
total time for both was used for the yield calculation, shown in the second part of
Table 10. The resulting Y(h) is somewhat more than twice as large as the
standard REG yield, and the difference is highly significant (Z ¼ 4.1).

For the third example, claims of larger effect sizes depending on special
conditions may be tentatively evaluated by cross-experiment comparisons of

TABLE 10
Time-Based Yield: Schmidt, Braud, Honorton

Experimenter Subjects Rate (min/trial) Z-score Trials, N Hours Y(h) SE(h)

Schmidt* Subject .75 2.73 1040 13 .757 .277
Schmidt Subject, experimenter .75 2.73 1040 26 .535 .196
Schmidt Subject, experimenter,

observer
.75 2.73 1040 39 .437 .160

Braud* Participant 16 1.97 960 16 .492 .250
Braud Participant, helper 16 1.97 960 32 .348 .177
Honorton* Sender 6 3.89 355 36 .653 .168
Honorton Receiver 30 3.89 355 178 .291 .075
Honorton Julliard student 6 2.20 20 2 1.556 .707
Honorton Selected subject 6 .69 7 .7 .824 1.195

* Data used in Figure 6.
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yield, in the absence of direct intra-experiment evidence. The Ganzfeld
experimental program designed by Honorton (Bem & Honorton, 1994) has
common elements with our PRP experiments, but again, it has some important
differences. In particular, the Ganzfeld situation of reduced sensory input is held
to be more conducive for anomalous information acquisition than simpler free-
response protocols, although this expectation is based largely on theoretical
considerations rather than on specific comparisons. The strongest set of these
experiments is a database generated in a design meeting stringent criteria
discussed in the Honorton-Hyman debates and description of ideal protocols
(Hyman & Honorton, 1986). It is referred to as autoganzfeld and incorporates
excellent controls (Honorton et al., 1990).

In this experiment also there are alternative ways to define the time invested.
As in the PRP experiments, there are two participants, and the time spent by both
might be included, but for this analysis only one person’s time is counted. (As
before, the two-person yields would be a factor of �2 smaller.) The receiver is in
the Ganzfeld situation for 30 minutes, and the sender sees six 1-minute
presentations of the target over the course of the half hour. Calculations for
both times are shown in the third part of Table 10. Also included are two data
subsets from special or selected subject populations to indicate the range of
yields in this experiment. One group (Julliard students) represents an artistic
population; the other was selected on the basis of prior performance.

The Schmidt example provides moderate evidence that in structurally similar
experiments, selected subjects can generate larger yields by a factor of at least
two. All three of the Schmidt yield estimates are larger than that for the standard
PEAR REG, and although the error estimates are commensurately large, the
difference is highly significant (Z¼ 6.7). In the Braud experiment, which is part
of a program studying anomalous interactions with living systems, there is again
a significantly higher yield compared with the REG experiment by a factor of
about two. We should note that participants in the Braud experiment were
friends and acquaintances of the helpers, and that some of the REG co-operator
subsets have equal or larger yields, suggesting an alternative interpretation based
on multiple-subject cooperation. The overall Ganzfeld yields are very much in
line with PEAR’s standard PRP results, and the largest, based on the 6 minutes/
trial rate, is almost identical (.653 for Ganzfeld and .644 for PRP). Both
experiments also show a similar range of yield variations across subsets. This
constitutes suggestive evidence that the Ganzfeld procedure does not, as is
widely believed, enhance anomalous information transfer over an unconstrained
free-response approach; at least it indicates the question is open, and it deserves
direct scrutiny in appropriately designed research.

Discussion

A fundamental objective in all these experiments is to acquire data that address
the anomalous interactions of consciousness with its environment. Considering
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the experiments from the point of view of the participants, one commonality is
clear: there is a period of time during which the person is engaged in the
experimental task, with intentions to produce anomalous results. Since the
anomalies are correlated with these intentions, whether in the REG, RMC,
PEND, CHIP, or PRP experiments, a natural unit for comparable yield
calculations is arguably the length of time spent by the operator or percipient
doing the experiment. This analysis shows that time normalization does give
sensible results, specifically, a high degree of consistency among calculated
yields for a variety of human/machine experiments. In contrast, the binary and
information measures and the trial unit all indicate yields ranging over orders
of magnitude, which does not seem sensible for experiments that all attempt to
establish and measure essentially the same phenomenon. Our teleological unit,
the series, approaches the consistency of the time-based measure, but detailed
examination shows it is correlated with the size or length of the series. Moreover,
it is impractical because it is arbitrarily defined and not generally applicable.

Figure 6 graphically displays the uniformity of the time measure Y(h) across
a broad spectrum of independent subsets of the human/machine and information
transfer experiments, as well as the stark exceptions to the rule. It includes local
and remote variants of the REG, ATP, RMC, and PEND experiments; the
PseudoREG, RMC3, and CHIP databases; the PRP database; and the three
examples drawn from non-PEAR research: Schmidt (HS), Honorton (CH), and
Braud (WB). A v2 test across the 12 local and remote databases from PEAR’s
human/machine experiments yields 5.78 on 11 degrees of freedom, indicating

Fig. 6. Time-normalized yields, Y(h), across a wide range of experiments.
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strong homogeneity. The distribution of yield measures becomes heterogeneous
if the PRP database is added (v2 ¼ 28. 5 on 12 df, p ¼ 0.0046). Adding the
non-PEAR databases singly does not produce significant heterogeneity, but the
combined effect of these and the PRP database produces a highly significant
v2 of 44.6 on 15 df.

A few examples of applications for the time-normalization approach to cross-
experiment comparisons suggest the power and flexibility of this perspective.

1. One of the motivating questions for the development of the PEND
experiment was whether an analog device might be more accessible or
vulnerable to anomalous interactions than digital experiments. The answer
suggested in this analysis is that there is no such advantage.

2. The experiment on influencing error rates in CHIP in its best-controlled
form could not be pursued beyond a pilot database for technical reasons,
and it did not establish a persuasive level of significance. These compar-
isons show, however, that it did have a yield comparable to the other
human/machine experiments, suggesting that the behavior of a fundamen-
tal electronic device such as a CHIP may be vulnerable to an influence of
consciousness. Results generated in the less completely controlled proto-
col were shown by this analysis to be outliers, demonstrating the need for
experimental refinement.

3. Application of this strategy on an operator-specific basis to the
comparison of yields across several experiments provides another test of
the viability of time normalization. It also may produce useful insights
into the relative vulnerability of different physical systems: does the
particular device matter, or are operators’ effects independent of the de-
vice? Preliminary work shows that there is indeed consistency of the time-
normalized yield across multiple experiments for individual operators. A
Bayesian analysis by my colleague, York Dobyns, based on all data from
operators who have generated databases in two or more PEAR experi-
ments indicates a Bayes factor of 11. This is roughly equivalent to 30-to-1
odds in favor of the hypothesis of intra-operator consistency across
experiments.

4. Remembering that other moderators may need to be considered, the two or
three times larger yield in the PRP experiment suggests that it is more
efficient, implying greater statistical power to detect anomalous inter-
actions. It may be possible to determine whether this is a function of the
protocol or the involvement of two participants by direct comparison of the
PRP experiment with otherwise similar PRP experiments involving only
a single participant. Indeed, it should be instructive to compare yields in
various one- and two-person anomalies experiments, for example, within
the PEAR database of multiple operator experiments, and by examining the
telepathy vs. clairvoyance literature in parapsychology. As noted earlier,
the overall REG co-operator yield closely resembles the single-operator
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REG yield, suggesting that PRP (information transfer) effects may be
inherently larger as a function of the particular task.

5. With the caveat that a broader survey is required, the exploratory
applications to other researchers’ works promise useful, quantitative
results. Comparisons of Y(h) from the selected populations of subjects in
Helmut Schmidt’s REG random number experiments against PEAR’s
unselected subject populations suggests a considerably larger yield for
the former, and an implied commensurate research efficiency. Anomalous
interaction with physiological systems in Braud’s research (which
involves two people as well) also appears to promise a substantial
increase in yield. Finally, yields in the PRP work at PEAR and the
Ganzfeld protocols of Honorton appear not to differ, despite widespread
belief in the efficacy of the Ganzfeld, but both show a factor of two or
three larger yield than is typical for human/machine experiments.

These examples from intra- and inter-laboratory comparisons are interesting
in their own right, and they provide tentative answers to questions of
considerable importance for anomalies research. In addition, the results seem
reasonable, and as such constitute a substantial inductive argument for the
viability of Y(h) as a time-based natural scale for anomalous effects.
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